Азот методичка сгу

1. Положение азота в периодической системе химических элементов
2. Строение атома азота 
3. Физические свойства и нахождение в природе
4. Строение молекулы
5. Соединения азота
6. Способы получения
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и кремнием
7.1.3. Взаимодействие с водородом и фосфором 
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с активными металлами

Аммиак 
1. Строение молекулы и физические свойства 
2. Способы получения
3. Химические свойства
3.1. Взаимодействие с серной кислотой
3.2. Взаимодействие с азотной кислотой
3.3. Взаимодействие с солями

Соли аммония
Способы получения солей аммония
Химические свойства солей аммония

Оксиды азота 
 1. Оксид азота (I) 
 2. Оксид азота (II) 
3. Оксид азота (III)
4. Оксид азота (IV)
5. Оксид азота (V)

Азотная кислота 
 1. Строение молекулы и физические свойства 
 2. Способы получения 
3. Химические свойства 
3.1. Диссоциация азотной кислоты 
2.3. Взаимодействие с основными и амфотерными оксидами и гидроксидами
2.4. Вытеснение более слабых кислот из солей
2.5. Взаимодействие с металлами
2.6. Взаимодействие с неметаллами
2.7. Окисление сложных веществ
2.8. Взаимодействие с белками

Азотистая кислота 

Соли азотной кислоты — нитраты

Соли азотистой кислоты — нитриты

Азот

Положение в периодической системе химических элементов

Азот расположен в главной подгруппе V группы  (или в 15 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение азота

Электронная конфигурация  азота в основном состоянии:

Атом азота содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом азота может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному механизму. Таким образом, максимальная валентность азота в соединениях равна IV. Также характерная валентность азота в соединениях — III.

Степени окисления атома азота – от -3 до +5. Характерные степени окисления азота -3, 0, +1, +2, +3, +4, +5.

Физические свойства и нахождение в природе

Азот в природе существует в виде простого вещества газа N2.  Нет цвета, запаха и вкуса. Молекула N2 неполярная, следовательно, в воде азот практически нерастворим.

Азот – это основной компонент воздуха (79% по массе). В земной коре азот встречается в основном в виде нитратов. Входит в состав белков, аминокислот и нуклеиновых кислот в живых организмах.

Строение молекулы

Связь между атомами в молекуле азота – тройная, т.к. у каждого атома в молекуле по 3 неспаренных электрона. Одна σ-связь (сигма-связь) и две — π-связи.

Структурная формула молекулы азота:

Структурно-графическая формула молекулы азота: N≡N.

Схема перекрывания электронных облаков при образовании молекулы азота:

Соединения азота

Типичные соединения азота:

Степень окисления Типичные соединения
+5 оксид азота (V) N2O5

азотная кислота HNO3

нитраты MeNO3

+4 оксид азота (IV) NO2
+3 оксид азота (III)

азотистая кислота

нитриты MeNO2

+2 оксид азота (II) NO
+1 оксид азота (I)
-3 аммиак NH3

нитриды металлов MeN

бинарные соединения азота с неметаллами

Способы получения азота

1. Азот в лаборатории получают при взаимодействии насыщенных растворов хлорида аммония и нитрита натрия. Образующийся в результате реакции обмена нитрит аммония легко разлагается с образованием азота и воды. В колбу наливают раствор хлорида аммония, а капельную воронку раствор нитрита натрия. При приливании нитрита натрия в колбу начинается выделение азота. Собирают выделяющийся азот в цилиндр. Горящая лучинка в атмосфере азота гаснет.

NaNO2   +   NH4Cl   →   NH4NO2   +  NaCl

NH4NO2  →   N2   +   2H2O

Суммарное уравнение процесса:

NaNO2   +   NH4Cl   →   N2   +  NaCl   +  2H2O

Видеоопыт взаимодействия нитрита натрия с хлоридом аммония можно посмотреть здесь.

Азот также образуется при горении аммиака:

4NH3   +  3O  →   2N2   +  6H2O

2. Наиболее чистый азот получают разложением азидов щелочных металлов.

Например, разложением азида натрия:

2NaN3   →   2Na    +    3N2

3. Еще один лабораторный способ получения азота — восстановление  оксида меди (II)  аммиаком при температуре ~700 °C:

3CuO  +  2NH3  →   3Cu   + N2    +  3H2O

В промышленности азот получают, буквально, из воздуха. При промышленном производстве очень важно, чтобы сырье было дешевым и доступным. Воздуха много и он пока бесплатный.

Используются различные способы выделения азота из воздуха — адсорбционная технология, мембранная и криогенная технологии.

Адсорбционные методы разделения воздуха на компоненты основаны на  разделения газовых сред в азотных установках лежит явление связывания твёрдым веществом, называемым адсорбентом, отдельных компонентов газовой смеси.

Основным принципом работы мембранных систем является разница в скорости проникновения компонентов газа через вещество мембраны. Движущей силой разделения газов является разница парциальных давлений на различных сторонах мембраны.

В основе работы криогенных установок разделения воздуха лежит метод разделения газовых смеси, основанный на разности температур кипения компонентов воздуха и различии составов находящихся в равновесии жидких и паровых смесей.

Химические свойства азота

При нормальных условиях азот химически малоактивен.

1. Азот проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами.

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000оС),  на электрической дуге  (в природе – во время грозы):

N +  O ⇄   2NO –  Q

Процесс эндотермический, т.е. протекает с поглощением теплоты.

1.2. При сильном нагревании (3000оС-5000оС или действие электрического разряда) образуется атомарный азот, который реагирует с серой, фосфором, мышьяком, углеродом с образованием бинарных соединений:

2С  + N→  N≡C–C≡N

Молекулярный азот, таким образом, не реагирует с серой, фосфором, мышьяком, углеродом.

1.3. Азот взаимодействует с водородом при высоком давлении и высокой температуре, в присутствии катализатора. При этом образуется аммиак:

N2   +   ЗН2   ⇄    2NH3

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.

Например, литий реагирует с азотом с образованием нитрида лития:

N2   +   6Li   →   2Li3N

2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Например, азот окисляет гидрид лития:

N2    +  3LiH  →   Li3N   +   NH3

Аммиак

Строение молекулы и физические свойства

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3о:

 У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:

Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск

ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например, аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

2NH4Cl    +  Са(OH)2   →   CaCl2  + 2NH3  +   2Н2O

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например, гидролиз нитрида кальция:

Ca3N2    +   6H2O  →  ЗСа(OH)2    +    2NH3

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

N2    +   3Н2    ⇄    2NH3

Процесс проводят при температуре 500-550оС и в присутствии катализатора.  Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Химические свойства аммиака

1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H+), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

:NH3   +   H2O    ⇄    NH4+   +   OH

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопыт растворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

NH3    +    H2SO4    →    NH4HSO4

2NH3   +   H2SO4    →   (NH4)2SO4

Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

NH3    +    H2O   + CO2  →    NH4HCO3

2NH3   +   H2O   + CO2    →   (NH4)2CO3

Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть  здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония. 

NH3   +   HCl  →   NH4Cl

Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.

Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

FeSO4  + 2NH3  + 2H2O  →  Fe(OH)2  + (NH4)2SO4

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.

Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

4NH3    +  CuCl2  →  [Cu(NH3)4]Cl2

Гидроксид меди (II) растворяется в избытке аммиака:

4NH3    +   Cu(OH)2   → [Cu(NH3)4](OH)2

5. Аммиак горит на воздухе, образуя азот и воду:

4NH3    +   3O2    →  2N2   +   6H2O

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

4NH3    +   5O2    →    4NO  +   6H2O

6. За счет атомов водорода в степени окисления +1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.

Например, жидкий аммиак реагирует с натрием с образованием амида натрия:

2NH3   +    2Na   →   2NaNH2   +  H2

 Также возможно образование Na2NHNa3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3    +   2Al   →   2AlN   +   3H2

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например, аммиак окисляется хлором до молекулярного азота:

2NH3    +   3Cl2    →  N2   +   6HCl

Пероксид водорода также окисляет аммиак до азота:

2NH3    +   3H2O2    →  N2   +   6H2O

Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например, оксид меди (II) окисляет аммиак:

2NH3    +   3CuO   →    3Cu   +   N2   +   3H2O

Соли аммония

Соли аммония  это соли, состоящие из катиона аммония и аниона кислотного остатка.

Способы получения солей аммония

1. Соли аммония можно получить взаимодействием аммиака с кислотами. Реакции подробно описаны выше.

2. Соли аммония также получают в обменных реакциях между солями аммония и другими солями.

Например, хлорид аммония реагирует с нитратом серебра:

NH4Cl + AgNO3 → AgCl + NH4NO3

3. Средние соли аммония можно получить из кислых солей аммония. При добавлении аммиака кислая соль переходит в среднюю.

Например, гидрокарбонат аммония реагирует с аммиаком с образованием карбоната аммония:

NH4НCO3  +   NH3   →   (NH4)2CO3

Химические свойства солей аммония

1. Все соли аммония – сильные электролиты, почти полностью диссоциируют на ионы в водных растворах:

NH4Cl   ⇄   NH4+ + Cl

2. Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями, если в продуктах образуется газ, осадок или образуется слабый электролит.

Например, карбонат аммония  реагирует с соляной кислотой. При этом выделяется углекислый газ:

(NH4)2CO3    +   2НCl →   2NH4Cl + Н2O + CO2

Соли аммония реагируют с щелочами с образованием аммиака.

Например, хлорид аммония реагирует с гидроксидом калия:

NH4Cl     +   KOH   →   KCl    +   NH3   +   H2O

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:

NH4Cl   +    Н2O    ↔   NH3 ∙ H2O   +   HCl

NH4+     +     HOH    ↔   NH3 ∙ H2O      +   H+

4. При нагревании соли аммония разлагаются. При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:

NH4Cl   →    NH3   +   HCl

NH4HCO3    →   NH3   +   CO2    +   H2O

  (NH4)2SO4    →   NH4HSO4   +  NH3

NH4HS  →   NH3   +   H2S

Если соль  содержит анион-окислитель, то разложение сопровождается  изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

NH4NO2   →   N2    +    2H2O  

190 – 245° C:

NH4NO3  →   N2O   +   2H2O

При температуре 250 – 300°C:

 2NH4NO3  →   2NO    +   4H2O

При температуре выше 300°C:

2NH4NO3    →   2N2   +   O2   +   4H2O

Разложение бихромата аммония («вулканчик»). Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

(NH4)2Cr2O7  →   Cr2O3    +   N2   +   4H2O

Окислитель –  хром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду. Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив. Температура плавления – почти 2300 градусов.  Оксид хрома – очень устойчивое вещество, не растворяется даже в кислотах. Благодаря устойчивости и интенсивной окраске окись хрома используется при изготовлении масляных красок.

Видеоопыт разложения дихромата аммония можно посмотреть здесь.

Оксиды азота

Оксиды азота Цвет  Фаза Характер оксида
N2O Оксид азота (I), закись азота, «веселящий газ» бесцветный газ несолеобразующий
NO Оксид азота (II) бесцветный газ несолеобразующий
N2OОксид азота (III), азотистый ангидрид синий жидкость кислотный
NOОксид азота (IV), диоксид азота, «лисий хвост» бурый газ кислотный (соответствуют две кислоты)
N2OОксид азота (V), азотный ангидрид бесцветный твердый кислотный

Оксид азота (I)

Оксид азота (I) –  это несолеобразующий оксид. Малые концентрации закиси азота вызывают лёгкое опьянение (отсюда название — «веселящий газ»). При вдыхании чистого газа быстро развиваются состояние опьянения и сонливость. Закись азота обладает слабой наркотической активностью, в связи с чем в медицине её применяют в больших концентрациях. В смеси с кислородом при правильном дозировании (до 80 % закиси азота) вызывает хирургический наркоз.

Строение молекулы оксида азота (I) нельзя описать методом валентных связей. Так как оксид азота (I) состоит из двух, так называемых резонансных структур, которые переходят одна в другую:

Общую формулу в таком случае можно задать, обозначая изменяющиеся связи в резонансных структурах пунктиром:

Получить оксид азота (I) в лаборатории можно разложением нитрата аммония:

 NH4NO3  →   N2O   +   2H2O

Химические свойства оксида азота (I):

1. При нормальных условиях оксид азота (I) инертен. При нагревании проявляет свойства окислителя. Оксид азота (I) при нагревании окисляет водород, аммиак, металлы, сернистый газ и др. При этом азот восстанавливается в простое вещество.

N2O      +    H2    →  N2   +   H2O

N2O      +    Mg   →  N2   +   MgO

N2O      +   2Cu   →  N2   +   Cu2O

3N2O    +   2NH3  →   4N2   +  3H2O

N2O      +    H2O   +  SO →   N2   +   H2SO4

Еще пример: оксид азота (I) окисляет углерод и фосфор при нагревании:

N2O   +   C   →   N2   +   CO

5N2O   +   2Р   →   5N2   +   Р2O5

2. При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя.

Например, N2O окисляется раствором перманганата в серной кислоте:

5N2O    +    3H2SO4   +   2KMnO4   →  10NO   +   2MnSO4    +   K2SO4    +  3H2O

Оксид азота (II)

Оксид азота (II) –  это несолеобразующий оксид.  В нормальных условиях это бесцветный ядовитый газ, плохо растворимый в воде. На воздухе коричневеет из-за окисления до диоксида азота. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Способы получения.

1. В лаборатории оксид азота (II) получают действием разбавленной азотной кислоты (30%) на неактивные металлы.

Например, при действии 30 %-ной азотной кислоты на медь образуется NO:

3Cu   +   8HNO3(разб.)  →  3Cu(NO3)2   +  2NO  + 4H2O

Также NO можно получить при окислении хлорида железа (II) или иодоводорода азотной кислотой:

3FeCl2    +     NaNO3   +   4HCl   →   3FeCl3   +   NaCl    +  NO   +   2H2O

  2HNO3   +  6HI   →   2NO   +   I2    +   4H2O

2. В природе оксид азота (II) образуется из азота и кислорода под действием электрического разряда, например, во время грозы:

N2   +   O2  →   2NO

3. В промышленности оксид азота (II) получают каталитическим окислением аммиака:

4NH3    +   5O2    →    4NO  +   6H2O

Химические свойства.

1. Оксид азота (II) легко окисляется под действием окислителей.

Например, горит в атмосфере кислорода:

2NO    +   O2   →   2NO2

Оксид азота (II) легко окисляется под действием хлора или озона:

2NO   +   Cl2  →  2NOCl

NO   +  O3  →   NO2   +   O2

2. В присутствии более сильных восстановителей проявляет свойства окислителя. В атмосфере оксида азота (II) могут гореть водород, углерод и т.п.

Например, оксид азота (II) окисляет водород и сернистый газ:

2NO   +   2H →  N2   +   2H2O

2NO   +  2SO2   →   2SO3   +   N2

Оксид азота (III)

Оксид азота (III), азотистый ангидрид – кислотный оксид. За счет азота со степенью окисления +3 проявляет восстановительные и окислительные свойства. Устойчив только при низких температурах, при более высоких температурах разлагается.

Способы получения: можно получить при низкой температуре из оксидов азота:

NO2     +   NO   ↔   N2O3

Химические свойства:

1. Оксид азота (III) взаимодействует с водой с образованием азотистой кислоты:

N2O3   +   H2O   ↔  2HNO2

2. Оксид азота (III) взаимодействует с основаниями и основными оксидами:

Например, оксид азота (III) реагирует с гидроксидом и оксидом натрия с образованием нитрита натрия и воды:

N2O3   +   2NaOH   →  2NaNO2    +   H2O

N2O3 + Na2O →  2NaNO2

Оксид азота (IV)

Оксид азота (IV) — бурый газ. Очень ядовит!  Для NO2  характерна высокая химическая активность.

Способы получения.

1. Оксид азота (IV) образуется при окислении оксида азота (I) и оксида азота (II) кислородом или озоном:

2NO   +  O2  →   2NO2

2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.

Например, при действии концентрированной азотной кислоты на медь:

4HNO3(конц.)    +    Cu   →    Cu(NO3)2    +    2NO2   +   2H2O

3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.

Например, при разложении нитрата серебра:

2AgNO3    →  2Ag   +   2NO  +   O2

Химические свойства.

1. Оксид азота (IV) реагирует с водой с образованием двух кислот — азотной и азотистой:

2NO2   +   H2O   →  HNO3   +   HNO2

Если растворение NO2 в воде проводить в избытке кислорода, то образуется только азотная кислота:

4NO2   +   2H2O   +  O2   →  4HNO3

Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3  и   NO:

3NO2   +   H2O   →  2HNO3   +   NO

2. При растворении оксида азота (IV) в щелочах образуются нитраты и нитриты:

 2NO2   +   2NaOH   →  NaNO3   +   NaNO2   +   H2O

4NO2   +   2Ca(OH) →   Ca(NO2)2   +   Ca(NO3)2      +   2H2O

В присутствии кислорода образуются только нитраты:

4NO2   +   4NaOH  +   O2   →   4NaNO3   +   2H2O

3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят фосфор, уголь, сера, оксид серы (IV) окисляется до оксида серы (VI):

2NO2   +   2S   →  N2   +   2SO2

2NO2   +   2C   →  N2   +   2CO2

10NO2   +   8P   →  5N2   +   4P2O5

NO2    +   SO2  →   SO3   +   NO

4. Оксид азота (IV) димеризуется:

2NO2  ⇄  N2O4

Оксид азота (V)

N2O5 – оксид азота (V), ангидрид азотной кислоты – кислотный оксид.

Получение оксида азота (V).

1. Получить оксид азота (V) можно окислением диоксида азота:

2NO2 + O3    →    N2O5 + O2

2. Еще один способ получения оксида азота (V) – обезвоживание азотной кислоты сильным водоотнимающим веществом, оксидом фосфора (V):

2HNO3    +   P2O5      →   2HPO3    +    N2O5

Химические свойства оксида азота (V).

1. При растворении в воде оксид азота (V) образует азотную кислоту:

N2O5    +   H2O   →  2HNO3

2. Оксид азота (V), как типичный кислотный оксид, взаимодействует с основаниями и основными оксидами с образованием солей-нитратов.

Например, оксид азота (V) реагирует с гидроксидом натрия:

N2O5    +   2NaOH   →  2NaNO3  +   H2O

Еще пример: оксид азота (V) реагирует с оксидом кальция:

N2O5 + CaO → Ca(NO3)2

3. За счет азота со степенью окисления +5 оксид азота (V) – сильный окислитель.

Например, он окисляет серу:

2N2O5   +   S   →   SO2   +   4NO2

4. Оксид азота (V) легко разлагается при нагревании (со взрывом):

2N2O5     →   4NO2   +   O2

Азотная кислота

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота  образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например, концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

KNO3    +    H2SO4(конц)    →    KHSO4    +    HNO3

2. В промышленности азотную кислоту получают из аммиака. Процесс осуществляется стадийно.

1 стадия. Каталитическое окисление аммиака.

4NH3    +   5O2    →    4NO  +   6H2O

2 стадия. Окисление оксида азота (II)  до оксида азота (IV) кислородом воздуха.

2NO   +    O2   →    2NO2

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

4NO2   +   2H2O   +  O2   →  4HNO3

Химические свойства

Азотная кислота – это сильная кислота. За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства.

1. Азотная кислота практически полностью диссоциирует в водном растворе.

 HNO→ H+ + NO3

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, азотная кислота взаимодействует с оксидом меди (II):

CuO   +   2HNO3   →   Cu(NO3)2   +   H2O

Еще пример: азотная кислота реагирует с гидроксидом натрия:

HNO3   +   NaOH   →   NaNO3   +   H2O

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов). 

Например, азотная кислота взаимодействует с карбонатом натрия:

2HNO3   +   Na2CO3   →  2NaNO3   +   H2O   +   CO2

4. Азотная кислота частично разлагается при кипении или под действием света:

4HNO3  →   4NO2   +   O2   +   2H2O

5. Азотная кислота активно взаимодействует с металлами. При этом  никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3  не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Fe    +   6HNO3(конц.)  →   Fe(NO3)3   +   3NO2  +   3H2O

 Al   +   6HNO3(конц.)   →  Al(NO3)3   +   3NO2  +   3H2O

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 :  3 (по объему):

HNO3      +   3HCl   +   Au   →   AuCl3   +   NO   +   2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

4HNO3(конц.)    +    Cu   →    Cu(NO3)2    +    2NO2   +   2H2O

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

10HNO3       +  4Ca   →    4Ca(NO3)2    +    2N2O   +   5H2O

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

8HNO3 (разб.)     +    3Cu   →    3Cu(NO3)2    +    2NO   +   4H2O

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

12HNO3(разб)     +  10Na   →    10NaNO3    +    N2   +   6H2O

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

10HNO3       +  4Ca    →   4Ca(NO3)2    +    2N2O   +   5H2O

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

10HNO3         +  4Zn   →    4Zn(NO3)2    +    NH4NO3   +   3H2O

Таблица. Взаимодействие азотной кислоты с металлами.

Азотная кислота
Концентрированная Разбавленная
с Fe, Al, Cr с неактивными металлами и металлами средней активности (после Al) с щелочными и щелочноземельными металлами  с неактивными металлами и металлами средней активности (после Al) с металлами до Al в ряду активности, Sn, Fe 
пассивация при низкой Т образуется NO2 образуется N2O  образуется NO  образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNOобычно восстанавливается до NO  или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например, азотная кислота окисляет серу, фосфор, углерод, йод:

6HNO3       +   S     →   H2SO4   +   6NO2    +    2H2O

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

5HNO3      +    P   →    H3PO4     +   5NO2    +    H2O

5HNO3      +    3P     +    2H2O   →    3H3PO4     +   5NO

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

4HNO3     +    C   →   CO2    +    4NO2    +    2H2O

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

10HNO3   +   I2  →   2HIO3   +   10NO2   +   4H2O

7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например, азотная кислота окисляет оксид серы (IV):

2HNO3     +   SO2  →   H2SO4     +   2NO2

Еще пример: азотная кислота окисляет йодоводород:

6HNO3   +   HI   →  HIO3   +   6NO2   +   3H2O

Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.

3С    +    4HNO3   →    3СО2    +    4NO    +   2H2O

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты. 

Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

2HNO3     +   H2S     →  S    +    2NO2   +   2H2O

При нагревании до серной кислоты:

2HNO3     +   H2S     →  H2SO4    +    2NO2   +   2H2O

8HNO3     +    CuS   →   CuSO4    +   8NO2    +   4H2O

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

4HNO3     +    FeS   →   Fe(NO3)3  +   NO    +   S    +   2H2O

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция»).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Азотистая кислота

Азотистая кислота HNO2 — слабая, одноосновная, химически неустойчивая кислота.

Получение азотистой кислоты.

Азотистую кислоту легко получить вытеснением из нитритов более сильной кислотой.

Например, соляная кислота вытесняет азотистую кислоту из нитрита серебра:

AgNO2   +   HCl   →    HNO2    +   AgCl

Химические свойства.

1. Азотистая кислота HNO2  существует только в разбавленных растворах, при нагревании она разлагается:

3HNO2   →  HNO3  +   2NO   +   H2O

без нагревания азотистая кислота также разлагается:

2HNO2    →    NO2    +    NO   +   H2O

2. Азотистая кислота взаимодействует с сильными основаниями.

Например, с гидроксидом натрия:

HNO2   +   NaOH   →   NaNO2   +   H2O

3. За счет азота в степени окисления +3 азотистая кислота проявляет слабые окислительные свойства. Окислительные свойства HNO2 проявляет только при взаимодействии с сильными восстановителями.

Например, HNO2 окисляет иодоводород:

2HNO2   +   2HI   →   2NO   +   I2   +   2H2O

Азотистая кислота также окисляет иодиды в кислой среде:

2НNO2   +   2KI   +   2H2SO4   →   K2SO4   +   I2 +   2NO   +  2H2O

Азотистая кислота окисляет соединения железа (II):

2HNO2   +   3H2SO4   +   6FeSO4  →   3Fe2(SO4)3   +   N2    +    4H2O

4. За счет азота в степени окисления +3 азотистая кислота проявляет сильные восстановительные свойства. Под действием окислителей азотистая кислота переходит в азотную.

Например, хлор окисляет азотистую кислоту до азотной кислоты:

HNO2   +  Cl2    +  H2O   →  HNO3  +   2HCl

Кислород и пероксид водорода также окисляют азотистую кислоту:

2HNO2   +   O2  →  2HNO3

HNO2   +   H2O2  →  HNO3   +   H2O

Соединения марганца (VII) окисляют HNO2:

5HNO +   2HMnO →   2Mn(NO3)2   +   HNO3   +   3H2O

Соли азотной кислоты — нитраты

Нитраты металлов — это твердые кристаллические вещества. Большинство очень хорошо растворимы в воде.

1. Нитраты термически неустойчивы, причем все они разлагаются на кислород и соединение, характер которого зависит от положения металла (входящего в состав соли) в ряду напряжений металлов:

  • Нитраты щелочных и щелочноземельных металлов (до Mg в электрохимическом ряду) разлагаются до нитрита и кислорода.

Например, разложение нитрата натрия:

2KNO3   →  2KNO2   +   O2    

Исключение – литий.

Видеоопыт разложения нитрата калия можно посмотреть здесь.

  • Нитраты тяжелых металлов (от Mg до Cu, включая магний и медь) и литий разлагаются  до оксида металла, оксида азота (IV) и кислорода:

Например, разложение нитрата меди (II):

  2Cu(NO3)2   →   2CuO    +    4NO2   +   O2

  • Нитраты малоактивных металлов (правее Cu) – разлагаются до металла, оксида азота (IV) и кислорода.

Например, нитрат серебра:

2AgNO3   →  2Ag   +   2NO  +   O2

Исключения:

Нитрит железа (II) разлагается до оксида железа (III):

4Fe(NO3)2   →   2Fe2O3   +   8NO2   +   O2

Нитрат марганца (II) разлагается до оксида марганца (IV):

Mn(NO3)2   →   MnO2   +   2NO2 

2. Водные растворы не обладают окислительно-восстановительными свойствами, расплавы – сильные окислители.

Например, смесь 75%    KNO3,  15% C  и  10% S  называют «черным порохом»:

2KNO3   +   3C    +    S   →   N2    +   3CO2    +   K2S

Соли азотистой кислоты — нитриты

Соли азотистой кислоты устойчивее самой кислоты, и все они ядовиты. Поскольку степень окисления азота в нитритах  равна +3, то они проявляют как окислительные свойства, так и восстановительные.

Кислород, галогены и пероксид водорода окисляют нитриты до нитратов:

2KNO +   O2   →  2KNO3

KNO2   +   H2O2  →  KNO3   +   H2O

KNO2   +   H2O   +   Br2   →  KNO +   2HBr

Лабораторные окислители — перманганаты, дихроматы — также окисляют нитриты до нитратов:

5KNO2   +   3H2SO4   +   2KMnO4   →   5KNO3    +    2MnSO4   +   K2SO4  +  3H2

3KNO2   +   4H2SO4   +   K2Cr2O7   →   3KNO3    +    Cr2(SO4)3   +   K2SO4  +  4H2O  

В кислой среде нитриты выступают в качестве окислителей.

При окислении йодидов или соединений железа (II) нитриты восстанавливаются до оксида азота (II):

 2KNO2   +   2H2SO4   +   2KI   →  2NO    +   I2    +   2K2SO4  +  2H2O

  2KNO2  +  2FeSO4   +  2H2SO→ Fe2(SO4)3 + 2NO + K2SO4 + 2H2O

При взаимодействии с очень сильными восстановителями (алюминий или цинк в щелочной среде) нитриты восстанавливаются максимально – до аммиака:

NaNO2 + 2Al + NaOH + 6H2O → 2Na[Al(OH)4] + NH3

Смесь нитратов и нитритов также проявляет окислительные свойства. Например, смесь нитрата и нитрита калия окисляет оксид хрома (III) до хромата калия:

3KNO2   +   Cr2O3   +  KNO3  →   2K2CrO4   +   4NO

Переименовал «A.P. Kuznetsov, A.V. SAvin-2.pdf» в

Переименовал «02_2. Законы Ману.doc» в

Переименовал «1 закон термодинамики. термохимия.doc» в

Переименовал «1 работа.docx» в

Переименовал «Programmirovanie» в

Переименовал «Otvety_na_zachet» в

Переименовал «Metodika_obuchenia_matematike_i_informatike» в

Переименовал «Matan» в

Переименовал «Lektsii_po_marko» в

Переименовал «Kompyuternaya_grafika» в

Переименовал «Diffur» в

Переименовал «bilety» в

Переименовал «Algem» в

Переименовал «1-5» в

Переименовал «6-10» в

Переименовал «11-15» в

Переименовал «16-23» в

Переименовал «118842_План-конспект_урока» в

Переименовал «12798_bc8a8d0dcdb4b29c3f9edee6573a5de4» в

Переименовал «Энгельс_Происхождение семьи.rtf» в

Переименовал «ШЕПЕЛЬ В,М.doc» в

Переименовал «Шейгал. Диссертация.pdf» в

Переименовал «Экспериментальная психологияЛекции.doc» в

Переименовал «Probability Theory — A.V. Bulinsky.pdf» в

Переименовал «prakticheskie землевединие.docx» в

Переименовал «prakticheskie_zadania_dlya_zhurnalistov.doc» в

Переименовал «psychology.djvu» в

Переименовал «Raup.Stanley.1974.Osnovy.paleontologii.djvu» в

Переименовал «red_26_05_-_KURSOVAYa_-_KUL_TURA_REChI.doc» в

Переименовал «psihologicheskaya_pomosch_teoriya_praktika.pdf» в

Переименовал «Russkaya_literatura.doc» в

Переименовал «RP_Osnovy_administrativnogo_prava_TD.doc» в

Переименовал «rp_tamozhennaya_statistika.doc» в

Переименовал «populyatsii_tipy_rosta.doc» в

Переименовал «posobie.docx» в

Переименовал «sb_sekretari.doc» в

Переименовал «Shpory_muzeeved.docx» в

Переименовал «Шпоры Музееведение..docx» в

Переименовал «Shpory_po_MKhK.docx» в

Переименовал «sin_diplom_2004.pdf» в

Переименовал «Zadachi_MME» в

Переименовал «Haskell_ЛР» в

Переименовал «лекции» в

Переименовал «Кинсфатор 162г» в

Переименовал «нартова бочавер differentcialnaya_psihologiya» в

Переименовал «физика(5 семестр)» в

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5

Азот — неметаллический элемент Va группы периодической таблицы Д.И. Менделеева. Составляет 78% воздуха. Входит в состав
белков, являющихся важной частью живых организмов.

Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в
кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью
азота.

Азот

Общая характеристика элементов Va группы

От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств.
Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Азот, фосфор и мышьяк являются неметаллами, сурьма — полуметалл, висмут — металл.

Элементы Va группы

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np3:

  • N — 2s22p3
  • P — 3s23p3
  • As — 4s24p3
  • Sb — 5s25p3
  • Bi — 6s26p3
Основное и возбужденное состояние азота

При возбуждении атома фосфора электроны на s-подуровне распариваются и переходят на p-подуровень. Однако с азотом ситуация иная. Поскольку азот находится во втором периоде, то
3ий уровень у него отсутствует, а значит распаривание электронов на s-подуровне невозможно — возбужденное состояние у азота отсутствует.

Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.

Основное и возбужденное состояние атома азота

Природные соединения

В природе азот встречается в виде следующих соединений:

  • Воздух — во вдыхаемом нами воздухе содержится 78% азота
  • Азот входит в состав нуклеиновых кислот, белков
  • KNO3 — индийская селитра, калиевая селитра
  • NaNO3 — чилийская селитра, натриевая селитра
  • NH4NO3 — аммиачная селитра (искусственный продукт, в природе не встречается)

Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако,
следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.

Аммиачная селитра

Получение

В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения из сжиженного воздуха получают азот.

Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.

Получение азота из сжатого воздуха

В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония

NH4NO2 → (t) N2 + H2O

Также азот можно получить путем восстановления азотной кислоты активными металлами.

HNO3(разб.) + Zn → Zn(NO3)2 + N2 + H2O

Получение азота из нитрита аммония

Химические свойства

Азот восхищает — он принимает все возможные для себя степени окисления от -3 до +5.

Степени окисления азота

Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение
азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.

Молекула азота

  • Реакция с металлами
  • Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.

    N2 + Li → Li3N (нитрид лития)

    N2 + Mg → (t) Mg3N2

    N2 + Al → (t) AlN

  • Реакция с неметаллами
  • Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.

    N2 + H2 ⇄ (t, p) NH3

Аммиак

Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях,
называется нашатырным спиртом.

Аммиак

Получение

В промышленности аммиак получают прямым взаимодействием азота и водорода.

N2 + H2 ⇄ (t, p) NH3

В лабораторных условиях сильными щелочами действуют на соли аммония.

NH4Cl + NaOH → NH3 + NaCl + H2O

Химические свойства

Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.

  • Реакция с водой
  • Образует нестойкое соединение — гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.

    NH3 + H2O ⇄ NH4OH

  • Основные свойства
  • Как основание аммиак способен реагировать с кислотами с образованием солей.

    NH3 + HCl → NH4Cl (хлорид аммония)

    NH3 + HNO3 → NH4NO3 (нитрат аммония)

    Нитрат аммония

  • Восстановительные свойства
  • Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные
    восстановительные свойства. Его используют для восстановления металлов из их оксидов.

    NH3 + FeO → N2↑ + Fe + H2O

    NH3 + CuO → N2↑ + Cu + H2O

    Горение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается
    выделением NO.

    NH3 + O2 → (t) N2 + H2O

    NH3 + O2 → (t, кат) NO + H2O

    Горение аммиака

Соли аммония

Получение

NH3 + H2SO4 → NH4HSO4 (гидросульфат аммония, избыток кислоты)

3NH3 + H3PO4 → (NH4)3PO4

Химические свойства

Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода — реакция идет.

  • Реакции с кислотами
  • NH4Cl + H2SO4 → (NH4)2SO4 + HCl↑

  • Реакции с щелочами
  • В реакциях с щелочами образуется гидроксид аммония — NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.

    NH4Cl + KOH → KCl + NH3 + H2O

  • Реакции с солями
  • (NH4)2SO4 + BaCl2 = BaSO4↓ + NH4Cl

  • Реакция гидролиза
  • В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.

    NH4+ + H2O ⇄ NH4OH + H+

    NH4OH ⇄ NH3 + H2O

  • Реакции разложения
  • NH4Cl → (t) NH3↑ + HCl↑

    (NH4)2CO3 → (t) NH3↑ + H2O + CO2

    NH4NO2 → (t) N2↑ + H2O

    NH4NO3 → (t) N2O↑ + H2O

    (NH4)3PO4 → (t) NH3↑ + H3PO4

    Фосфат аммония

Оксид азота I — N2O

Закись азота, веселящий газ — N2O — обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным
сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.

Закись азота

Получают N2O разложением нитрата аммония при нагревании:

NH4NO3 → N2O + H2O

Оксид азота I разлагается на азот и кислород:

N2O → (t) N2 + O2

Оксид азота II — NO

Окись азота — NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.

Получение

В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.

NH3 + O2 → (t, кат) NO + H2O

В лабораторных условиях — в ходе реакции малоактивных металлов с разбавленной азотной кислотой.

Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O

Химические свойства

На воздухе быстро окисляется с образованием бурого газа — оксида азота IV — NO2.

NO + O2 → NO2

Оксид азота IV бурый газ

Оксид азота III — N2O3

При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.

Оксид азота III

Получение

Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой (две реакции, в которых образуется смесь оксидов азота), затем
охлаждением полученной смеси газов до температуры — 36 °C.

As2O3 + HNO3 + H2O → H3AsO4 + NO↑

As2O3 + HNO3 + H2O → H3AsO4 + NO2

При охлаждении газов образуется оксид азота III.

NO + NO2 → N2O3

Химические свойства

Является кислотным оксидом. соответствует азотистой кислоте — HNO2, соли которой называются нитриты (NO2).
Реагирует с водой, основаниями.

H2O + N2O3 → HNO2

NaOH + N2O3 → NaNO2 + H2O

Оксид азота IV — NO2

Бурый газ, имеет острый запах. Ядовит.

Оксид азота IV

Получение

В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при
разложении нитратов.

Cu + HNO3(конц) → Cu(NO3)2 + NO2 + H2O

Разложение нитратов

Cu(NO3)2 → (t) CuO + NO2 + O2

Pb(NO3)2 → (t) PbO + NO2 + O2

Химические свойства

Проявляет высокую химическую активность, кислотный оксид.

  • Окислительные свойства
  • Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.

    NO2 + C → CO2 + N2

    NO2 + P → P2O5 + N2

    Окисляет SO2 в SO3 — на этой реакции основана одна из стадий получения серной кислоты.

    SO2 + NO2 → SO3 + NO

  • Реакции с водой и щелочами
  • Оксид азота IV соответствует сразу двум кислотам — азотистой HNO2 и азотной HNO3. Реакции с
    водой и щелочами протекают по одной схеме.

    NO2 + H2O → HNO3 + HNO2

    NO2 + LiOH → LiNO3 + LiNO2 + H2O

    Если растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.

    NO2 + H2O + O2 → HNO3

Оксид азота IV

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Азот — химический элемент № (7). Он расположен в группе втором периоде Периодической системы химических элементов.

N7+7)2e)5e

На внешнем слое атома азота содержатся пять валентных электронов, до его завершения не хватает трёх электронов. Поэтому в соединениях с металлами и водородом азоту характерна степень окисления (–3), а при взаимодействии с более электроотрицательными кислородом и фтором он проявляет положительные степени окисления от (+1) до (+5).

Азот в виде простого вещества содержится в воздухе. Его объёмная доля составляет (78) %. В земной коре соединения азота встречаются редко. Известно месторождение нитрата натрия 

NaNO3

 (чилийская селитра).

Азот относится к жизненно важным элементам, так как входит в состав молекул белков и нуклеиновых кислот.

Молекулы простого вещества состоят из двух атомов, связанных прочной тройной связью:

При обычных условиях азот — бесцветный газ без запаха и вкуса, малорастворимый в воде.

Не ядовит.

Азот химически малоактивен из-за прочной тройной связи и в химические реакции вступает только при высоких температурах.

При комнатной температуре он реагирует только с литием с образованием нитрида лития:

При нагревании образует нитриды и с некоторыми другими металлами:

С водородом азот реагирует только при высоком давлении, повышенной температуре и в присутствии катализатора. В реакции образуется аммиак:

В реакциях с металлами и водородом азот проявляет окислительные свойства.

Восстановительные свойства азота проявляются в реакции с кислородом:

Реакция возможна только при очень высокой температуре ((3000) °С) и частично протекает в атмосфере во время грозы. Образуется оксид азота((II)).

Большое количество азота используется для получения аммиака и азотных удобрений.

Применяется он для создания инертной среды при проведении химических реакций. Жидкий азот находит применение в медицине, используется для охлаждения в химических и физических исследованиях.

Чистый азот получают из воздуха.

Учебно-методическое пособие

9 класс

Продолжение. См. 21, 22, 23, 24, 25-26, 27-28/2003

5. Подгруппа азота

Знать: важнейшие свойства и
применение азота, фосфора, аммиака, оксидов азота
и фосфора, азотной и фосфорной кислот, нитратов;
важнейшие минеральные удобрения (азотные,
фосфорные и калийные), условия их рационального
хранения и использования; устройство прибора для
получения аммиака в лабораторных условиях;
качественные реакции на нитрат-, фосфат-ионы и
ион аммония; химические реакции, лежащие в основе
производства аммиака и азотной кислоты, условия
их осуществления; общие научные принципы
химического производства.
Уметь: давать характеристику подгруппе
элементов; составлять уравнения изученных
реакций, рассматривать их с точки зрения
окислительно-восстановительных и ионных
представлений; определять на практике нитрат- и
фосфат-ионы, а также ион аммония; решать
комбинированные задачи.
Основные понятия: донорно-акцепторный
механизм образования связи, ион аммония,
несолеобразующий (безразличный) оксид селитры,
удобрения (туки), аллотропия фосфора, фосфорный
ангидрид, азотистый ангидрид, азотный ангидрид,
нитриды, фосфиды.

Контрольные вопросы

1. Каково строение атома азота?
2. Каковы возможные валентности и степени
окисления азота?
3. Где в природе встречается азот?
4. Как получают азот в лаборатории и в
промышленности?
5. Каковы физические свойства азота?
6. Каковы химические свойства азота? Напишите
уравнения реакций.
7. Где применяется азот?
8. Каково строение молекулы аммиака? Какой тип
химической связи в молекуле NH3?
9. Как образуется донорно-акцепторная связь в
ионе аммония?
10. Почему аммиак способен окисляться?
11. Каковы физические свойства аммиака?
12. Как аммиак взаимодействует с водой и
кислотами?
13. Какие два способа окисления аммиака вам
известны? Приведите уравнения соответствующих
реакций.
14. Где применяется аммиак?
15. Почему соли аммония схожи с солями калия?
16. Какова растворимость в воде солей аммония?
17. Как получают аммиак в лаборатории и на
производстве? Составьте уравнения реакций
получения NH3.
18. Каковы общие свойства солей аммония? Напишите
уравнения реакций.
19. Каковы специфические свойства солей аммония?
Подтвердите свой ответ уравнениями реакций.
20. Какова качественная реакция на соли аммония?
Составьте уравнение реакции.
21. Какие оксиды азота вам известны?
22. Как можно получить монооксид азота? Каковы его
физические свойства?
23. Как можно получить диоксид азота? Каковы его
физические свойства?
24. Как диоксид азота взаимодействует с водой и
щелочами? Напишите уравнения реакций.
25. Каковы физические свойства азотной кислоты?
26. Каково строение молекулы азотной кислоты?
27. Каковы валентность и степень окисления азота в
азотной кислоте?
28. Как можно получить азотную кислоту? Приведите
уравнение реакции.
29. Почему азотная кислота является сильным
окислителем?
30. Как азотная кислота взаимодействует с
металлами?
31. Какие газообразные вещества могут выделяться
при восстановлении азота в азотной кислоте?
32. Какие металлы не взаимодействуют с
концентрированной азотной кислотой? Почему?
33. Как взаимодействуют с разбавленной азотной
кислотой медь и серебро? Напишите уравнения
реакций.
34. В какой таре можно хранить азотную кислоту?
35. Как разлагается азотная кислота?
36. Как взаимодействуют неметаллы с азотной
кислотой? Приведите уравнения реакций.
37. Какие еще соединения азота вам известны?
38. Как называют соли азотной кислоты? Каковы их
физические свойства?
39. Какие нитраты являются удобрениями?
40. Какие способы получения нитратов вам известны?
Составьте уравнения реакций.
41. Как могут разлагаться нитраты при нагревании?
Напишите уравнения реакций разложения KNO3,
Cu(NO3)2 и AgNO3.
42. Почему нитраты могут быть окислителями?
43. Как отличить нитраты от других солей?
44. Каково строение атома фосфора?
45. Каковы возможные степени окисления фосфора?
46. Где фосфор встречается в природе?
47. Какие аллотропные формы образует фосфор?
48. Какая форма простого вещества фосфора
наиболее активная?
49. Как получают фосфор в промышленности?
50. Каковы химические свойства фосфора? Приведите
уравнения реакций.
51. Как фосфор взаимодействует с бертолетовой
солью?
52. Где применяется фосфор?
53. Какова формула фосфорного ангидрида? Каковы
его физические свойства?
54. Как фосфорный ангидрид взаимодействует с
водой? Составьте уравнение реакции.
55. Каков химический характер оксида Р2О5?
Как он реагирует с щелочами?
56. Где применяется фосфорный ангидрид?
57. Назовите формулы главных фосфорных кислот.
58. Как можно получить ортофосфорную кислоту?
Напишите уравнение реакции.
59. Как диссоциирует ортофосфорная кислота?
60. Сколько видов солей может образовать
ортофосфорная кислота?
61. Как называют соли ортофосфорной кислоты?
Приведите примеры формул солей ортофосфорной
кислоты, в которых замещены один, два и три атома
водорода. Назовите эти соли.
62. Как распознать соли фосфорной кислоты?
63. Где применяют ортофосфорную кислоту и ее соли?
64. Какие вещества называют удобрениями?
65. Какие виды удобрений вам известны?
66. Перечислите важнейшие удобрения каждой
группы.
67. Какие элементы составляют семейство азота?
68. Как изменяются свойства элементов группы Vа и
их соединений с увеличением атомного номера?
Почему?
69. Где применяются мышьяк, сурьма и висмут?
70. Что вы знаете о фосфине?
71. Какие соединения называют фосфидами? Как они
взаимодействуют с водой и кислотами?
72. Как доказать, что белый и красный фосфор – это
аллотропные формы одного и того же элемента?

5.1. Некоторые соединения азота и их
свойства

5.1.1. Оксиды азота

– оксид
азота(I), закись азота, «веселящий» газ,
несолеобразующий оксид. Получают N2O
разложением аммиачной селитры:

Установка для получения оксида азота(I) состоит
из штативов, пробирки, пробки с газоотводной
трубкой, кристаллизатора, цилиндра и спиртовки,
как показано на рис. 1. В сухую пробирку помещают
нитрат аммония, закрывают пробкой с газоотводной
трубкой и осторожно нагревают. Газ собирают в
цилиндр, наполненный водой.

Рис. 1. Получение оксида азота(I) в лаборатории
Рис. 1.
Получение оксида азота(I) в лаборатории

Оксид N2O разлагается при
нагревании:

Оксид N2O реагирует с водородом:

– оксид
азота(II), несолеобразующий оксид. Получают NO
реакцией меди с кислотой HNO3 (разб.) (рис. 2).

Установка для получения оксида азота(II) состоит
из штативов, пробирки, пробки с газоотводной
трубкой, кристаллизатора, цилиндра и спиртовки. В
пробирку помещают немного медных стружек и
заливают разбавленную азотную кислоту. Пробирку
закрывают пробкой с газоотводной трубкой и
укрепляют в штативе. Конец газоотводной трубки
опускают в кристаллизатор с водой и далее в
цилиндр, как показано на рис. 2. При нагревании
начинает выделяться бесцветный газ – оксид
азота(II).

Рис. 2. Получение оксида азота(II) в лаборатории
Рис. 2.
Получение оксида азота(II) в лаборатории

Оксид азота NO легко окисляется
кислородом воздуха, т. е. действует как
восстановитель:

В реакции с сернистым газом оксид NO –
окислитель:

– оксид
азота(III), азотистый ангидрид (ему соответствуют
азотистая кислота HNО2 и соли нитриты, NaNО2
– нитрит натрия); это кислотный оксид, для него
характерны все свойства кислотных оксидов.
Получают оксид N2O3 по реакции:

NO2 + NO N2O3.

– оксид
азота(IV), диоксид азота, бурый газ (токсичен).

Реакции оксида NO2

1) С водой:

2NO2 + Н2O = НNO3 + НNO2.

2) С щелочами:

2NO2 + 2NaOH = NаNО3 + NаNО2 + Н2O.

3) Димеризация при охлаждении:

При температуре –11 °С равновесие полностью
смещено вправо, а при +140 °С – целиком влево.

– оксид
азота(V), азотный ангидрид, кислотный оксид,
сильный окислитель.
Оксид N2O5 легко разлагается:

2N2O5 = 4NO2 + O2.

5.1.2. Особые свойства азотной
кислоты.
НNО3 – cильный окислитель

При взаимодействии НNО3 с металлами (М)
никогда не выделяется водород:

М + НNО3
соль + вода + газ.

Смесь HNO3 (конц.) с HCl (конц.) в объемном
соотношении 1:3 (1V HNO3 + 3V HCl)
называют «царской водкой».

Au + HNO3 + 3HCl = AuCl3 + NO + 2H2O.

5.2. Решение задач по теме
«Подгруппа азота»

Задача 1. Определите минимальный объем
раствора с массовой долей азотной кислоты 80% и
плотностью 1,45 г/мл, который потребуется для
растворения серебра, полученного при
взаимодействии 10 г железа с раствором,
содержащим
48 г нитрата серебра.

Решение

Задача 2. При нормальных условиях 12 л
газовой смеси, состоящей из аммиака и
углекислого газа, имеют массу 18 г. Сколько литров
каждого из газов содержит смесь? Каковы объемные
доли каждого компонента в смеси?

Решение

Задания для
самоконтроля

1. Напишите уравнения практически осуществимых
реакций:

2. Напишите уравнения реакций следующих
превращений:

3. Составьте схемы электронного баланса,
расставьте коэффициенты в уравнениях реакций:

а) HNO3 + С СО2
+ NO + H2O;
б) HNO3 + AsH3 H3AsO4
+ NO2 + H2O;
в) HNO3 + P + H2O H3PO4
+ NO;
г) HNO3 + CuS Сu(NO3)2
+ H2SO4 + NO + H2O;
д) MnO2 + K2CO3 + KNO3 K2MnO4 + KNO2 + CO2;
е) K2CrO4 + (NH4)2S + H2O Сr(OH)3 + KOH + NH4OH + S.

4. При взаимодействии 28 л (н. у.) аммиака с
раствором азотной кислоты массой 400 г, в котором
содержится 0,24 массовые доли HNO3, образуется
нитрат аммония массой 90 г. Вычислите выход
продукта реакции в процентах от теоретически
возможного.

Ответ. 90%.

5. При нагревании технического нитрата меди(II)
массой 75,2 г выделяется кислород объемом 4 л (н. у.).
Рассчитайте массовую долю примесей в образце
нитрата.

Ответ. 10,7%.

6. Имеется смесь хлорида, карбоната и нитрата
натрия массой 50 г. Определите массовую долю
каждого компонента смеси, если известно, что при
действии на нее избытка соляной кислоты
выделяется газ объемом 2,24 л (н. у.), а при
прокаливании такой же массы смеси выделяется
кислород объемом 2,24 л (н. у.).

Ответ. (NaCl) =
44,8%, (Na2CO3) = 21,2%,
(NaNO3) = 34%.

7. При действии избытка разбавленной азотной
кислоты на образец известняка массой 80 г,
содержащий 20% примесей, выделяется оксид
углерода(IV), который пропускают через раствор,
содержащий 25,6 г гидроксида натрия. Определите,
какая соль (кислая или средняя) образуется.
Какова ее масса?

Ответ. 53,76 г NaHCO3.

8. Определите, какая соль образовалась и какова
ее масса, если раствор гидроксида кальция
объемом 200 мл, концентрация которого 0,2 моль/л,
прореагировал с 9,8%-м раствором ортофосфорной
кислоты массой 200 г.

Ответ. 9,36 г Са(Н2РО4)2.

9. Оксид фосфора(V), полученный окислением 31 г
фосфора, растворен в 495 г воды с образованием
ортофосфорной кислоты. В этот раствор пропущено
44,8 л аммиака. Определите состав полученной соли и
ее концентрацию в растворе (массовую долю в
процентах).

Ответ. 22% (NH4)2НРО4.

Ответы на задания для
самоконтроля

5.2. Решение задач по теме
«Подгруппа азота»


И.М.ХАРЧЕВА,
М.А.АХМЕТОВА

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *