Аксиома параллельности прямых теорема

Геометрия

7 класс

Урок № 20

Аксиома параллельных прямых

Перечень рассматриваемых вопросов:

  • Аксиомы и теоремы.
  • Исторические сведения об аксиоматическом построении евклидовой геометрии.
  • Параллельные и перпендикулярные прямые.
  • Признаки параллельности прямых.
  • Решение задач на доказательство параллельности прямых.

Тезаурус:

Аксиома – это утверждение, которое принимается в качестве исходного, без доказательства в рамках данной теории.

Аксиома параллельных прямых.

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Следствия из аксиомы.

Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Если две прямые, параллельны третьей прямой, то они параллельны.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения

Построение геометрии

Геометрия на плоскости изучает фигуры: сначала даются их определения, затем доказываются свойства или отношения в виде теорем.

Однако есть утверждения, которые принимаются в качестве исходных, они не доказываются. Это аксиомы.

Аксиома – происходит от греческого «аксиос», что означает «ценный, достойный». Изначально имело смысл «самоочевидная истина».

Теорема – греческое слово, означает «зрелище, представление». В математике греков употреблялось в смысле «истина, доступная созерцанию».

Аксиома параллельных прямых.

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Следствия из аксиомы.

Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Если две прямые параллельны третьей прямой, то они параллельны.

Впервые аксиоматический подход к изложению геометрии был изложен в знаменитом сочинении Евклида «Начала» в III веке до нашей эры. Геометрию, которую мы изучаем, по сей день, называют евклидовой. Схема изучения геометрии представлена так: задаются начальные понятия (точка, прямая, плоскость), определения фигур (отрезок, луч, треугольник и др.). Затем изучаются свойства или отношения между ними в виде аксиом или теорем.

Приведём примеры аксиом, которые уже встречали в предыдущих параграфах, хотя они не назывались аксиомами.

  • Через любые две точки проходит прямая, и притом только одна.
  • На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
  • От любого луча можно отложить угол, равный данному неразвёрнутому углу, и притом только один.

Евклид является автором аксиоматического подхода к построению геометрии.

Аксиома параллельных прямых:

через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

На рисунке через точку М проведены две прямые. Но только одна из них прямая b параллельна прямой а.

Утверждения, которые выводятся из аксиом или теорем, называются следствиями, и они доказываются.

Следствия из аксиомы параллельных прямых.

1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Доказательство методом от противного.

Пусть a b, c пересекает прямую a в точке M. Предположим, что прямая c не пересекает b. Тогда через точку M проходит две прямые a и c параллельные b. Это противоречит аксиоме, значит предположение неверно, т. е. прямая c пересекает b.

2. Если две прямые параллельны третьей прямой, то они параллельны.

Доказательство методом от противного.

Пусть a ║ c, b ║ c.

Предположим, что прямые a и b не параллельны, т. е. пересекаются в точке M. Тогда через точку M проходит две прямые a и b параллельные c. Это противоречит аксиоме, значит, предположение неверно, т. е. прямая a параллельна прямой b.

Разбор заданий тренировочного модуля

№ 1. Доказать существование прямой, параллельной данной.

Объяснение:

Доказательство:

  1. Проведём через точку М прямую c ┴ а.
  2. Затем проведём прямую b c.
  3. Так как прямые a и b перпендикулярны прямой c, то они параллельны.

№ 2. Через точку А, не лежащую на прямой р, проведены четыре различные прямые.

Сколько из них пересекает прямую р?

Объяснение.

1 случай. Если одна из прямых параллельна р. Тогда три других пересекают прямую р, согласно следствию 1 из аксиомы параллельных прямых.

2 случай. Если ни одна из прямых не параллельна р. Тогда все четыре пересекают прямую р.

Ответ: 3 или 4.

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Параллельные прямые
  5. Аксиома параллельных прямых

Рассмотрим произвольную прямую и точку М, не лежащую на ней (Рис.1).

Докажем, что через точку М можно провести прямую, параллельную прямой . Для этого проведем через точку М две прямые: сначала прямую перпендикулярно к прямой , а затем прямую перпендикулярно к прямой (Рис.2). А из того, что две прямые и перпендикулярны к третьей прямой следует, что они параллельны ().

Возникает вопрос: можно ли через точку М провести еще одну прямую, параллельную прямой ?

Если прямую «повернуть» на какой-то угол вокруг точки М, то она пересечет прямую (прямая на рис.3).

То есть нам кажется, что через точку М нельзя провести прямую отличную от прямой , параллельную прямой . Утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, не может быть доказано на основе остальных аксиом Евклида, а само является аксиомой.

Аксиома параллельных прямых

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Следствия из аксиомы параллельных прямых

10. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Дано: , = М (Рис.4).

Доказать: .

Доказательство:

Если мы предположим, что прямая не пересекает прямую , то прямая будет параллельна прямой , а по условию через точку М проходит прямая параллельная прямой , значит получим, что через точку М будут проходить две прямые и параллельные прямой (Рис.5).

Но это противоречит аксиоме параллельных прямых, значит, наше предположение неверно, и прямая пересекает прямую , т.е. . Что и требовалось доказать.

20. Если две прямые параллельны третьей прямой, то они параллельны.

Дано: (Рис.6).

Доказать: .

Доказательство:

Предположим, что прямые и не параллельны, т.е. пересекаются в некоторой точке М (Рис.7).

Тогда получим, что через точку М проходят две прямые и параллельные прямой , т.к. по условию и  . Но это противоречит аксиоме параллельных прямых, следовательно, наше предположение неверно, значит, прямые и параллельны, т.е. . Что и требовалось доказать.


Следствиеутверждение, которое выводится непосредственно из аксиом или теорем.

Советуем посмотреть:

Параллельные прямые

Признаки параллельности двух прямых

Практические способы построения параллельных прямых

Аксиомы геометрии

Теорема о накрест лежащих углах

Теорема о соответственных углах

Теорема об односторонних углах

Теорема об углах с соответственно параллельными сторонами

Теорема об углах с соответственно перпендикулярными сторонами

Параллельные прямые


Правило встречается в следующих упражнениях:

7 класс

Задание 196,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 197,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 200,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 213,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 218,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 10,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 11,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 13,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 14,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 279,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


«Параллельные прямые»



Параллельные прямые

Параллельные прямые — две прямые, которые лежат в одной плоскости и не пересекаются, а || b.

Слово «параллельный» от греческого «parallelos» — идущий рядом. Знак параллельности || впервые встречается в трудах У. Оутреда (1677 г).

Аксиома параллельности: 
Через точку, не лежащую на данной прямой, на плоскости можно провести только одну прямую, параллельную данной прямой.

Выделенная синим цветом часть этого утверждения — знаменитый пятый постулат Евклида. Отказ от пятого постулата ведёт к геометрии Лобачевского. В геометрии Лобачевского через точку, лежащую за прямой, проходит множество прямых, которые не пересекают данную прямую.

Иногда Аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.

аксиома параллельности

Примечание. В планиметрии две различные прямые либо пересекаются, либо параллельны. В стереометрии возможен третий вариант — прямые могут не пересекаться, так как не лежат в одной плоскости. Такие прямые называются скрещивающимися.

Свойства и признаки параллельных прямых:

  • Две прямые, параллельные третьей, параллельны.
  • Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
  • Если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
  • Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
  • Если две параллельные прямые пересечены секущей, то:
    – сумма внутренних односторонних углов равна 180°,
    – накрест лежащие углы равны,
    – соответственные углы равны,

Теорема Фалеса:
Если на одной из двух прямых отложено несколько равных отрезков и через их концы проведены параллельные прямые, не пересекающие другую прямую, то и на ней отложатся равные отрезки.


Это конспект по теме о параллельных прямых. Выберите дальнейшие действия:

  • Перейти к следующему конспекту: ЗАДАЧИ по теме Параллельные прямые
  • Вернуться к Списку конспектов по геометрии

Признаки, которые мы рассматривали в первой части теории, и свойства, которые будем рассматривать в этой части, доказываем разными способами.

Признак — это некоторый факт, благодаря которому мы устанавливаем справедливость интересующего нас суждения о некотором объекте.

Если при пересечении двух прямых третьей секущей накрест лежащие углы равны, то эти две прямые параллельны.

Свойство — если мы уверены в справедливости суждения, мы формулируем свойство объекта.

Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.

Аксиома, в свою очередь — такая истина, которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливости которых строят все дальнейшие суждения и их доказательства.

Аксиома параллельных прямых.

В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.

Иногда эту аксиому называют как одно из свойств параллельных прямых, но на справедливости этой аксиомы строятся многие доказательства в геометрии.

Paral_taisne_caur_p.png

Другие свойства параллельных прямых.

1. Если одна из пары параллельных прямых параллельна третьей прямой, то и другая прямая параллельна третьей прямой.

2. Если некая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую.

Эти свойства в отличие от аксиомы нужно доказать.

Докажем 1. Свойство.  

Даны две параллельные прямые (a) и (b). Верно ли, что если прямая (c) параллельна прямой (a), то она параллельна и прямой (b)?

Tris_paral_taisnes.png 

Используем противоположное суждение.

Допустим, что возможна ситуация, когда прямая (c) параллельна одной из параллельных прямых — прямой (a) — пересекает другую прямую (b) в некоторой точке (K).

Tris_paral_taisnes1.png

Получается противоречие с аксиомой параллельных прямых. Мы имеем ситуацию, когда через точку проходят две пересекающиеся прямые, которые параллельны одной и той же прямой (a). Такого не может быть, значит, прямые (b) и (c) пересекаться не могут.

Мы доказали, что верно: если одна из пары параллельных прямых параллельна третьей прямой, то и другая прямая параллельна третьей прямой.

Попробуй доказать самостоятельно 2. Свойство.

Если некая прямая (c) пересекает одну из двух параллельных прямых (a), то она пересекает и вторую параллельную прямую (b). 

Tris_paral_taisnes_krusto.png

Таким же методом от противоположного суждения попробуй представить, что возможна ситуация, когда прямая пересекает одну из параллельных прямых, но не пересекает другую.

Tris_paral_taisnes_krusto1.png

Перечислим свойства углов, которые образуются при пересечении двух параллельных прямых с третьей секущей.

При пересечении двух параллельных прямых третьей секущей:

— накрест лежащие углы равны,

— соответственные углы равны,

— сумма односторонних углов равна (180°).

Lenku_veidi_paral1.png

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *